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Rare Transitions in Molecular Dynamics

 Chemical Reaction

Protein Folding

Material Sciences

Examples:

Stable state

Stable state

Transition

Energy barrier

Potential Energy Surface

Rare events are hard to observe yet crucial



Problem Setting

where:
‣  is the state of the system;


‣  is a smooth potential;


‣  is the inverse of temperature;


‣  is the standard -dimensional Brownian motion. 

xt ∈ Ω ⊂ ℝd

V : ℝd → ℝ

β = 1/T

wt d

q(x) = ℙ (τB < τA ∣ x0 = x)
We are interested in the committor

Dynamics governed by an SDE,



Committor Function as a PDE Solution
(Lq)(x) = 0  for x ∉ A ∪ B
q(x) = 0  for x ∈ A
q(x) = 1  for x ∈ B .

Lq = − β−1Δq + ∇V ⋅ ∇q

where  is the infinitesimal generator of the process defined as:L
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Lessen Curse of Dimensionality with FEX

However, they usually possess a low-
dimensional structure, e.g collective variables.

Our work: FEX can identify the low-dimensional structure.

Collective variables

N atoms  3N-dim config. space∝

High-dimensional configuration space!

Challenge:



Overview of PDE Solvers

Q: Why finite expression?
A: Low-dimensional structure of high-dimensional problem 

• Mathematical expressions: combination of symbols with rules to form a valid function



Finite Expression Method (FEX)

Advantages: No curse of dimensionality in approximation

• Theorem (Liang and Yang, 2022) Suppose the function space  is generated with operators including 
’’. Let , for any  in the Holder function class 

 and , there exists a k-finite expression  such that , if 

.

𝕊k
′ ′ +′ ′ ,′ ′ −′ ′ ,′ ′ ×′ ′ ,′ ′ /′ ′ ,′ ′ max{0,x}′ ′ ,′ ′ sin(x)′ ′ ,′ ′ 2x p ∈ [1, + ∞) f
ℋα

μ([0,1]d) ϵ > 0 ϕ ∈ 𝕊k ∥f − ϕ∥Lp ≤ ϵ

k ≥ 𝒪(d2(log d + log
1
ϵ

)2)

Q: How to numerically identify such finite expression?

A: Combinatorial optimization.

• k-finite expression: a mathematical expression with at most k operators.

• Function space in FEX:  as the set of s-finite expressions with  𝕊k s < k



Reinforcement Learning for Combinatorial Optimization

Goal: Apply RL to implement the combinatorial optimization to find the expression
By Richard S. Sutton and Andrew G. Barto.

Selection

Realization

Evaluation

Action

State

Reward PDE regression quality

Operators sampled from policy network

Mathematical expression



FEX Expression Tree

Binary
Tree

Math
Expression

Depth

Binary operator

Unary operator : input

: output

Pre-order traversal of the tree generates a finite expression, e.g.,  .exp(cos(3x1)) + x2



FEX: A generative model for math expression

NN Controller (policy)   χ

𝒥(Φ) := 𝔼e∼χΦ
S(e) .

∇Φ𝒥(Φ) = 𝔼e∼χΦ {S(e)
s

∑
i=1

∇Φlog (pi
Φ(ei))}

Training Objective: Reward



Parameterization of committer by FEX

C(q) = ∫ΩAB

∇q(x)
2

dρ(x) + c̃ (∫∂A
q(x)2dm∂A(x) + ∫∂B

(q(x) − 1)2 dm∂B(x))

Input 

Loss

Unary operator

Binary operator

...

Variational formulation:

and parameterize  with FEX binary trees.q(x) dρ(x) = Z−1 exp−βV(x) dxwith

 input configurationx



Example 1: Double-Well Potential

V(x) = (x12 − 1)2

collective variable

+ 0.3
d

∑
i=2

x2
i

Consider the potential

A = {x ∈ ℝd ∣ x1 ≤ − 1}, B = {x ∈ ℝd ∣ x1 ≥ 1}

with

d2f (x1)
dx2

1
− 4x1 (x2

1 − 1)
df (x1)

dx1
= 0, f(−1) = 0, f(1) = 1

The ground truth solution is q(x) = f(x1)



Example 1: Double-Well Potential



Example 1: Double-Well Potential

leaf 1: Id → α1,1x1 + … + α1,10x10 + β1

leaf 2: tanh → α2,1 tanh(x1) + … + α2,10 tanh(x10) + β2

𝒥(x) = α3 tanh(leaf 1 + leaf 2) + β3

FEX identifies the following representation

α3 = 0.5, β3 = 0.5where

Therefore, we can use spectral method to solve the ODE to achieve 


spectral accuracy.



Example 2: Concentric Spheres

V(x) = 10 |x |2

Consider the potential

A = {x ∈ ℝd ∣ x ≥ a}, B = {x ∈ ℝd ∣ x ≤ b}

with

d2q(r)
dr2

+
d − 1

r
dq(r)

dr
− β

dq
dr

dV
dr

= 0

The ground truth solution is , where q(x) = q(r)

q(r)
r=a

= 0, q(r)
r=b

= 1

r2 =
d

∑
i=1

x2
i

where d = 6, a = 1, b = 0.25



Example 2: Concentric Spheres
FEX identifies the following representation

Again, we can use spectral method to solve the ODE to achieve 


spectral accuracy.

q(r) :=
0.0020
r0.5d−1

+ 0.6016 (0.6054 − 0.5800r2) − 0.0340



Example 3: Rugged-Mueller’s Potential

The domain of interest , andΩ : [−1.5,1] × [−0.5,2] × ℝ8

V(x) = Ṽ (x1, x2)
collective variables

+
1

2σ2

10

∑
i=3

x2
i

Consider the committer corresponding to the following potential:

Ṽ (x1, x2) =
4

∑
i=1

Dieai(x1 − Xi)2+bi(x1 − Xi)(x2 − Yi)+ci(x2 − Yi)2
+ γ sin (2kπx1) sin (2kπx2)

where

A = {x ∈ ℝ10 ∣ (x1 + 0.57)2 + (x2 − 1.43)2 ≤ 0.3}
B = {x ∈ ℝ10 ∣ (x1 − 0.56)2 + (x2 − 0.044)2 ≤ 0.3}



Example 3: Rugged-Mueller’s Potential

(a) T = 22 committer (FEM) (b) T = 22 committer (FEX)



Example 3: Rugged-Mueller’s Potential
leaf 1: ( ⋅ )4 → α11

x4
1 + … + α110

x4
10 + β1

leaf 2: ( ⋅ )4 → α21
x4

1 + … + α210
x4

10 + β2

leaf 3: ( ⋅ )4 → α31
x4

1 + … + α310
x4

10 + β3

leaf 4: ( ⋅ )2 → α41
x2

1 + … + α410
x2

10 + β4,

𝒥1(x) = α7 tanh((α5 cos(leaf 1 × leaf 2) + β5) − (α6sigmoid(leaf 3 × leaf 4) + β6)) + β7

Furthermore, FEX identifies the low-dimensional structure of the problem
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• FEX is a new methodology to solve high-dimensional committers (PDEs), demonstrating higher or comparable 

accuracy than the neural network method (PINN). 


• FEX can identify the low-dimensional structure inherent in the problem. 


• Once FEX successfully identifies the low-dimensional structure, we can achieve arbitrary accuracy by solving the 
reduced low-dimensional problem with classical methods, e.g. finite element method. 

Thank you!
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