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Rare Transitions in Molecular Dynamics

Potential Energy Surface Examples:

Energy barrier
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Problem Setting

Dynamics governed by an SDE,
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-
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where: dx, = — VV(x)di +/2p~1aw,

x, € Q C R%is the state of the system;
V:R? > R is a smooth potential;
f = 1/T is the inverse of temperature;

W, is the standard d-dimensional Brownian motion.

We are interested In
q(X)zl]j’(TB<TA\XO=X)




Committor Function as a PDE Solution

(Lg)(x) =0 forx& AUB
g(x) =0 forxe A
g(x) =1 forx € B.

where L is the infinitesimal generator of the process defined as:

| Lg=—-p'Ag+VV.-Vgq
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Lessen Curse of Dimensionality with FEX

& Challenge:

High-dimensional configuration space!

N atoms &« 3N-dim config. space

However, they usually possess a low-
dimensional structure, e.g collective variables.

Our work: FEX can identify the low-dimensional structure.




Overview of PDE Solvers

High-dimensional PDE
\ 4

Numerical solvers

Finite expression method (Ours) Neural network method

Solution: Solution: —» Mesh-free
—» Black-box solution

0.52% — 0.4y’ —. .. —» High accuracy 0 e O

. —» Low memory cost PAY- : — Considerable
0.5y° + 0.1 oLLLE® memory cost

Finite element method

SO'QF'OW — Mesh-based
g7 —» Discrete solution
— Exponential

— Explicit solution

—0.4z* +2.32%*—... — Interpretable P

memory cost in dim.

o Q: Why finite expression?
o A: Low-dimensional structure of high-dimensional problem

 Mathematical expressions: combination of symbols with rules to form a valid function




Finite Expression Method (FEX)

Advantages: No curse of dimensionality in approximation

* Kk-finite expression: a mathematical expression with at most k operators.

» Function space in FEX: §;, as the set of s-finite expressions with s < k

 Theorem (Liang and Yang, 2022) Suppose the function space S, is generated with operators including

T =T " max{0,x ), sin(x)”,” 2*. Let p € [1, + 00), for any fin the Holder function class
Z ([0, 1]d) and € > 0, there exists a k-finite expression ¢ € S, such that ||f — @||;, < €, if

k > O(d*(logd + log — )2)

o Q: How to numerically identify such finite expression??

o A: Combinatorial optimization.




Reinforcement Learning for Combinatorial Optimization

Rt+l
S.. | Environment

By Richard S. Sutton and Andrew G. Barto.

o Goal: Apply RL to implement the combinatorial optimization to find the expression

Action o—— Operators sampled from policy network

m —> Mathematical expression

—> PDE regression quality




FEX Expression Iree

Unary operator 1. input
@ Binary operator O: output
4
01 01
| )
Binary . @
Tree L
1
20 201 202
Math : :
Depth L=1 L=1
\

Pre-order traversal of the tree generates a finite expression, e.g., exp(cos(3x;)) + x, .
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FEX: A generative model for math expression

Expression generation

Tree EXxpression
— i sample, 70 )
. Id
|, e .,
Q@
E sample
BN — »'_] 1> sin|-> .
O X sin tan
I :
— - [t:| sampe) tant---------------------- '
I
O Binary Unary as((aq sin(x) + 81 ) x (as tan(x) + B83)) + B3

Training Objective: (@) :=E,., S(e).

Vo F(®) =E,., 4 Se) ) Volog (piye))
NN Controller (policy) y =




Parameterization of committer by FEX

Variational formulation:

2 3 2
C(g) = J | Va®) || “dp(x) + ¢ J q(x)*dmy,(x) +J (g(x) = 1)" dmyp(x)
Qup 0A oB
and parameterize g(X) with FEX binary trees. WIth dp(x) = Z 1exp?V® dx

Unary operator

. /Q\
Q Binary operator

/é,\ 4 Jya(a(x))*dmaa(x)
q(x) “Loss
e @’ fﬂ\Au3|VQ(X)|2dm(x) ,@
|z—y1 42
"Il, *5faB(q(X) - 1)2dm33(x)
X input configuration
1




Example 1: Double-Well Potential

Consider the potential

d
V) = (21 403 )%
=2

collective variable

with

A={xeR?|x<-1}, B={xeR|x >1}

The ground truth solution is g(x) = f(x;)

df
— 4x; (xf — 1) d(:) =0, f(-1)=0, Al)=1

d’f (x;)

dx?




Committor function

Example 1: Double-Well Potential
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Example 1: Double-Well Potential

FEX identifies the following representation
leaf 1: 1d — a; 1 x; + ... + a; 10X + S

leaf 2: tanh — a, q tanh(x)) + ... + a, 1o tanh(x() + p,
J(X) = oy tanh(leaf 1 + leaf 2) + p;

where a; =0.5, f;=0.5

node o gy a3 a4 a5 g w7 ag «qg9 o190 B

leaf 1: Id 1.6798 00 0.0 00 0.0 00 0.0 0.0 0.0 0.0 0.0

leaf 2: tanh 1.9039 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Therefore, we can use spectral method to solve the ODE to achieve

spectral accuracy.



Example 2: Concentric Spheres

Consider the potential
V(x) = 10| x|
with

A={x€Rd\XZd}, B={X€Rd\XSb} whered =6, a=1, b =0.25

d
The ground truth solution is g(x) = g(r), where r*>= )’ x?

d*q(r) N d—1 dq(r) _ﬁdq dV
dr? r dr dr dr

=0, ¢

r=ad

q(r)




Example 2: Concentric Spheres

FEX identifies the following representation

0.0020 ,
q(r) = +0.6016 (0.6054 — 0.5800r*) — 0.0340
10.5d—1
_ 10' L FEX ......... Error
2 0.8- —— Committor function 10724 R
< 0.6 s
£0.4 5 1073
=
£ 0.2-
@
0.0- 107%: .
0.4 0.6 0.8 1.0 | 04 0.6 0.8 1.0

x|

Again, we can use spectral method to solve the ODE to achieve

spectral accuracy.




Example 3: Rugged-Mueller’s Potential

Consider the committer corresponding to the following potential:

3 1 10

V(x) = % (xl,xz) + > Z X7

=3

collective variables

where .
V (xl, xz) = Z Die“i(xl ~X) b = Xi) (1 = V)i~ 1)’ + ¥ sin (2kﬂx1) sin (2/{71'362)

=1

The domain of interest Q : [—1.5,1] X [—0.5,2] X R®, and

A = {x e R \/(x1 +0.57)" + (x, — 1.43)" < 0.3}

B = {x e R \/(xl —0.56)" + (x, — 0.044)” < 0.3}




Example 3: Rugged-Mueller’s Potential
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(@) T = 22 committer (FEM) (b) T =22 committer (FEX)




leaf 1:
leaf 2:
leaf 3:

leaf 4:

J1(X) = oy tanh((as cos(leaf 1 x leaf 2) + ) — (a;sigmoid(leaf 3 x leaf 4) + f,)) + S

Example 3:

() > alle+
() > azle+
() - a31xf+

(-) - a41x12+

Rugged-Mueller’s Potential
+ almxfo + ),
+ azmxfo + )
+ asloxfo + /3

2
+ ay X+ P

Furthermore, FEX identifies the low-dimensional structure of the problem

node 1 x9 a3 Q4 @5 @ Q7 @8 g Q10 3

leaf 1: (-)* 0.0893 —0.0217 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9460
leaf 2: (-)* —0.0660 0.2018 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8938
leaf 3: (-)* —0.4211 0.1263 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 —-3.3150
leaf 4: ()2 0.9242 1.1818 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -—1.6088
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* FEX is a new methodology to solve high-dimensional committers (PDEs), demonstrating higher or comparable
accuracy than the neural network method (PINN).

 FEX can identify the low-dimensional structure inherent in the problem.

* Once FEX successfully identifies the low-dimensional structure, we can achieve arbitrary accuracy by solving the
reduced low-dimensional problem with classical methods, e.g. finite element method.

Thank you!
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